Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Dalton Trans ; 53(4): 1698-1705, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38169009

ABSTRACT

Preparation of the high value-added chemical 2,5-dimethylfuran (2,5-DMF) from the biomass-derived platform molecule 5-hydroxymethylfurfural (HMF) is of great significance in the preparation of biofuels. Here, a bottom-up strategy was used to prepare a metal-organic framework (MOF) material with a two-dimensional nanosheet morphology, named CPM, in which an additive 2-methylimidazole was introduced into the hydrothermal process of Cu2+ ions and terephthalic acid. Subsequently, CPM-700 prepared by heat treatment under an inert atmosphere showed excellent catalytic performance in the reaction of HMF hydrodeoxygenation to 2,5-DMF. The materials before and after pyrogenation were characterized by PXRD, XPS, TEM, N2 adsorption and desorption and so on. It was confirmed that compared with the catalyst derived from the cubic MOF material self-assembled by Cu2+ and terephthalic acid, the morphology of 2D nanosheets was beneficial for the reaction of HMF to 2,5-DMF. Combined with the experimental data, the possible reaction path of 2,5-DMF preparation from HMF is that 2,5-dihydroxymethylfuran was formed by hydrogenation of the aldehyde group on the furan ring, and then 2,5-DMF was obtained by hydrogenolysis. This paper provides an effective route for 2D MOF-derived catalytic materials in the selective hydrogenation of HMF.

2.
Arch Virol ; 168(10): 262, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37773423

ABSTRACT

Tembusu virus (TMUV) is an emerging pathogenic flavivirus associated with acute egg-drop and fatal encephalitis in domestic waterfowl. Since its initial identification in mosquitoes in 1955, TMUV has been confirmed to infect ducks, pigeons, sparrows, geese, and chickens, posing a significant threat to the poultry industry. Here, we sequenced two DTMUV strains isolated in 2019 and systematically investigated the possible origin, genetic relationships, evolutionary dynamics, and transmission patterns of TMUV based on complete virus genome sequences in the public database. We found that TMUV can be divided into four major clusters: TMUV, cluster 1, cluster 2, and cluster 3. Interestingly, we found that cluster 2.2 (within cluster 2) is the most commonly involved in interspecies transmission events, and subcluster 2.1.2 (within cluster 2.1) is currently the most prevalent cluster circulating in Asia. Notably, we also identified three positively selected sites in the E and NS1 proteins, which may be involved in virus replication, immune evasion, and host adaptation. Finally, phylogeographic analysis revealed that cluster dispersal originated in Southeast Asia and that short-distance transmission events have occurred frequently. Altogether, these data provide novel insights into the evolution and dispersal of TMUV, facilitating the development of rapid diagnostics, vaccines, and therapeutics against TMUV infection.


Subject(s)
Flavivirus Infections , Flavivirus , Poultry Diseases , Animals , Flavivirus Infections/epidemiology , Flavivirus Infections/veterinary , Molecular Epidemiology , Chickens , Ducks
3.
Viruses ; 14(8)2022 08 09.
Article in English | MEDLINE | ID: mdl-36016368

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that causes acute diarrhea, vomiting, dehydration, and a high mortality rate in neonatal piglets. In recent years, PEDV has been associated with co-infections with other swine enteric viruses, including porcine rotavirus (PoRV), resulting in increased mortality among newborn piglets. In this paper, we developed a bivalent vaccine against PEDV and PoRV by constructing a recombinant PEDV encoding PoRV VP7 (rPEDV-PoRV-VP7). The recombinant virus was constructed by replacing the entire open reading frame 3 (ORF3) in the genome of an attenuated PEDV strain YN150 with the PoRV VP7 gene using reverse genetic systems. Similar plaque morphology and replication kinetics were observed in Vero cells with the recombinant PEDV compared to the wild-type PEDV. It is noteworthy that the VP7 protein could be expressed stably in rPEDV-PoRV-VP7-infected cells. To evaluate the immunogenicity and safety of rPEDV-PoRV-VP7, 10-day-old piglets were vaccinated with the recombinant virus. After inoculation, no piglet displayed clinical symptoms such as vomiting, diarrhea, or anorexia. The PoRV VP7- and PEDV spike-specific IgG in serum and IgA in saliva were detected in piglets after rPEDV-PoRV-VP7 vaccination. Moreover, both PoRV and PEDV neutralizing antibodies were produced simultaneously in the inoculated piglets. Collectively, we engineered a recombinant PEDV expressing PoRV VP7 that could be used as an effective bivalent vaccine against PEDV and PoRV.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Chlorocebus aethiops , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Diarrhea/prevention & control , Diarrhea/veterinary , Porcine epidemic diarrhea virus/genetics , Rotavirus , Swine , Vaccines, Combined , Vero Cells , Vomiting
4.
ACS Appl Mater Interfaces ; 14(15): 17195-17207, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35384659

ABSTRACT

The efficient hydrogenation of biomass-derived levulinic acid (LA) to value-added γ-valerolactone (GVL) based on nonprecious metal catalysts under mild conditions is crucial challenge because of the intrinsic inactivity and instability of these catalysts. Herein, a series of highly active and stable carbon-encapsulated Co/ZnO@C-X (where X = 0.1, 0.3, 0.5, the molar ratios of Zn/(Co+Zn)) heterojunction catalysts were obtained by in situ pyrolysis of bimetal CoZn MOF-74. The optimal Co/ZnO@C-0.3 catalyst could achieve 100% conversion of LA and 98.35% selectivity to GVL under mild conditions (100 °C, 5 bar, 3 h), which outperformed most of the state-of-the-art catalysts reported so far. Detailed characterizations, experimental investigations, and theoretical calculations revealed that the interfacial interaction between Co and ZnO nanoparticles (NPs) could promote the dispersibility and air stability of the active Co0 for the activation of H2. Moreover, the strong Co-ZnO interaction also enhanced the Lewis acidity of the Co/ZnO interface, contributing to the adsorption of LA and the esterification of intermediates. The synergy between the hydrogenation sites and the Lewis acid sites at the Co/ZnO interface enabled the conversion of LA to GVL with high efficiency. In addition, benefiting from the Co-ZnO interfacial interaction as well as the unique carbon-encapsulated structure of the heterojunction catalyst, the recyclability was also greatly improved and the yield of GVL was nearly unchanged even after six cycles.

5.
Inorg Chem ; 60(24): 19328-19335, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34865466

ABSTRACT

Ethylene (C2H4) is one of the most significant substances in the petrochemical industry; however, the capture of acetylene (C2H2) in about 1% from C2H2/C2H4 mixtures is a difficult task because of the similarity of their physical properties. With the aggravation of the energy crisis, using metal-organic framework (MOF) materials to purify C2H4 through adsorptive separation is a promising way to save energy and reduce emission. Pore-space partition (PSP) with the aim of enhancing the density of the binding sites and the strength of the host-guest interactions is an effective means to promote a solution for the challenging gas separation problems. Herein, we report a new embedding metal-carboxylate chain-induced topology upgrade strategy within a MOF to realize PSP and separation of C2H2/C2H4 mixtures. As a proof of concept, we construct a microporous MOF (NUM-12) utilizing the in situ insertion of cobalt terephthalic chains into a pretargeted ant-type framework during synthesis. Because of the attainment of an elaborately tuned aperture size and a specific pore environment through this strategy, NUM-12a (activated NUM-12) not only has a remarkable gas sorption capacity and strong interactions for C2H2 but also possesses an excellent purification performance for C2H2/C2H4 mixtures. Both experiments and simulation calculations clearly reveal that NUM-12 is a promising candidate for the separation of C2H2/C2H4, proving the feasibility of this new strategy for developing newly fashioned MOFs with adjustable structure and performance.

6.
BMC Surg ; 21(1): 202, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33879132

ABSTRACT

BACKGROUND: Gastrointestinal stromal tumors rarely occur in children, but when they do, their biological behavior and histopathological patterns differ from those of adults. CASE PRESENTATION: A 13-year-old boy with a gastrointestinal stromal tumor was characterized by a rare genetic mutation. The patient complained of "fatigue with intermittent abdominal pain for 1 month". According to the preoperative imaging examination, gastroscopy, and gastroscopic biopsy, the patient was diagnosed with a gastric stromal tumor. Postoperative pathology showed that the tumor cells were fusiform and ovoid, and mitotic figures were easily seen. Immunohistochemistry revealed that the tumor was S-100(+), SOX10(-), CD34(+), SMA(partially+), DOG-1(+), CD117(+), KI-67 (positive for 20% + of the subjects and 40% + of the hotspots), and SDHB(-). Genetic tests showed missense mutations in ALK and TSC1. With surgical treatment, the tumor was completely removed. The patient recovered well and was discharged on the ninth day after the operation. He is currently under follow-up. CONCLUSIONS: In this case involving a patient with a gastrointestinal stromal tumor, immunohistochemistry indicated that the tumor was an "SDH-deficient type", and gene detection showed no KIT or PDGFRA mutation but rare ALK and TSC1 mutations, which adds to the knowledge of the types of gene mutations in children with gastrointestinal stromal tumors.


Subject(s)
Anaplastic Lymphoma Kinase/genetics , Gastrointestinal Stromal Tumors , Stomach Neoplasms , Tuberous Sclerosis Complex 1 Protein/genetics , Adolescent , Gastrointestinal Stromal Tumors/diagnosis , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/metabolism , Gastrointestinal Stromal Tumors/surgery , Humans , Immunohistochemistry , Male , Mutation, Missense , Stomach Neoplasms/diagnosis , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/surgery , Succinate Dehydrogenase/metabolism
7.
ACS Appl Mater Interfaces ; 13(10): 12169-12180, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33682409

ABSTRACT

Carbon-encapsulated metal-organic framework (MOF) composite is one kind of emerging new catalyst with high efficiency and has gained much attention. However, for this kind of composite catalyst, the key to improving its catalytic activity and durability is to realize the effective dispersion of MOF nanoparticles (NPs) and enhance the interaction between MOF NPs and the carbon matrix, which remain a significant challenge. Herein, ultrafine MOF NPs within multichamber carbon spheres (MOF@MCCS), for the first time, have been rationally synthesized by a two-step double-solvent strategy for high-performance catalysts. The precise loading of guest MOFs can be achieved by adjusting the multichamber structure and calcination extent of the multichamber polymer (MCP), and the particle size of MOFs can be as low as 13.2 nm. Due to the formation of abundant carbon defects in the pyrolysis process of MCPs, the special structure and synergistic effect make the material exhibit higher catalytic activity and durability. More importantly, this method is universal and can be extended to different MOF systems. The two-step double-solvent strategy not only prepares a unique structure of MOF@MCCS-type host-guest-encapsulated catalysts but also provides a new idea for the design of high-efficiency catalysts with better performance and higher durability.

8.
Front Oncol ; 11: 574318, 2021.
Article in English | MEDLINE | ID: mdl-35186705

ABSTRACT

BACKGROUND: The difficulties of early diagnosis of colorectal cancer (CRC) result in a high mortality rate. The ability to predict the response of a patient to surgical resection or chemotherapy may be of great value for clinicians when planning CRC treatments. Metabolomics is an emerging tool for biomarker discovery in cancer research. Previous reports have indicated that the metabolic profile of individuals can be significantly altered between CRC patients and healthy controls. However, metabolic changes in CRC patients at different treatment stages have not been explored. METHODS: To this end, we performed nuclear magnetic resonance (NMR)-based metabolomic analysis to determine metabolite aberrations in CRC patients before and after surgical resection or chemotherapy. In general, a total of 106 urine samples from four clinical groups, namely, healthy volunteers (n = 31), presurgery CRC patients (n = 25), postsurgery CRC patients (n = 25), and postchemotherapy CRC patients (n = 25), were collected and subjected to further analysis. RESULTS: In the present study, we identified five candidate metabolites, namely, N-phenylacetylglycine, succinate, 4-hydroxyphenylacetate, acetate, and arabinose, in CRC patients compared with healthy individuals, three of which were reported for the first time. Furthermore, approximately ten metabolites were uniquely identified at each stage of CRC treatment, serving as good candidates for biomarker panel selection. CONCLUSION: In summary, these potential metabolite candidates may provide promising early diagnostic and monitoring approaches for CRC patients at different anticancer treatment stages.

9.
Chin J Cancer Res ; 31(3): 547-556, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31354223

ABSTRACT

Accumulating evidence suggests that periostin is frequently upregulated in tissue injury, inflammation, fibrosis and tumor progression. Periostin expression in cancer cells can promote metastatic potential of colorectal cancer (CRC) via activating PI3K/Akt signaling pathway. Moreover, periostin is observed mainly in tumor stroma and cytoplasm of cancer cells, which may facilitate aggressiveness of CRC. In this review, we summarize information regarding periostin to emphasize its role as a prognostic marker of CRC.

10.
Front Microbiol ; 9: 1607, 2018.
Article in English | MEDLINE | ID: mdl-30065719

ABSTRACT

Colorectal cancer (CRC) is the third most diagnosed cancer worldwide due to its high difficulty in early diagnosis, high mortality rate and short life span. Recent publications have demonstrated the involvement of the commensal gut microbiota in the initiation, progression and chemoresistance of CRC. However, this microbial community has not been explored within CRC patients after anti-cancer treatments. To this end, we performed next generation sequencing-based metagenomic analysis to determine the composition of the microbiota in CRC patients after anti-cancer treatments. The microbial 16S rRNA genes were analyzed from a total of 69 fecal samples from four clinical groups, including healthy individuals, CRC patients, and CRC patients treated with surgery or chemotherapy. The findings suggested that surgery greatly reduced the bacterial diversity of the microbiota in CRC patients. Moreover, Fusobacterium nucleatum were shown to confer chemoresistance during CRC therapy, and certain bacterial strains or genera, such as the genus Sutterella and species Veillonella dispar, were specifically associated with CRC patients who were treated with chemotherapeutic cocktails, suggesting their potential relationships with chemoresistance. These candidate bacterial genera or strains may have the ability to enhance the dosage response to conventional chemotherapeutic cocktails or reduce the side effects of these cocktails. A combination of common CRC risk factors, such as age, gender and BMI, identified in this study improved our understanding of the microbial community and its compositional variation during anti-cancer treatments. However, the underlying mechanisms of these microbial candidates remain to be investigated in animal models. Taken together, the findings of this study indicate that fecal microbiome-based approaches may provide additional methods for monitoring and optimizing anti-cancer treatments.

11.
Chin J Cancer Res ; 30(6): 669-676, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30700935

ABSTRACT

Gastrointestinal (GI) cancer is one of the most common causes of cancer-related deaths worldwide. Tumor markers are valuable in detecting post-surgical recurrence or in monitoring response to chemotherapy. Pyruvate kinase isoform M2 (PKM2), a glycolytic enzyme catalyzing conversion of phosphoenolpyruvate (PEP) to pyruvate, confers a growth advantage to the tumor cells and enables them to adapt to the tumor microenvironment. In this review, we have summarized current research on the expression and regulation of PKM2 in tumor cells, and its potential role in GI carcinogenesis and progression. Furthermore, we have also discussed the potential of PKM2 as a diagnostic and screening marker, and a therapeutic target in GI cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...